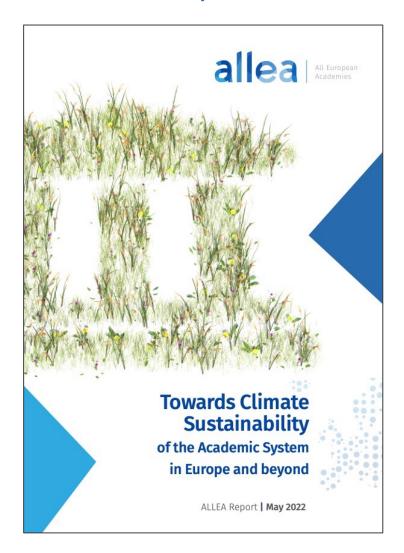
All European Academies

Towards climate sustainability in the academic system in Europe and beyond

MAY 25, 2022

ASTRID EICHHORN


(DIE JUNGE AKADEMIE & UNIV. OF SOUTHERN DENMARK)

ALLEA working group on climate sustainability in the academic system

 ALLEA: European Federation of Academies; member academies from about 40 countries; working groups on topics in evidence-based policy advice and in science policy

- Report published May 5, 2022
- Available at:

DOI: 10.26356/climate-sust-acad

or at www.allea.org

• The academic system is currently not climate sustainable.

• The academic system is currently not climate sustainable.

• Individual stakeholders are taking first steps towards climate sustainability.

• The academic system is currently not climate sustainable.

• Individual stakeholders are taking first steps towards climate sustainability.

• There are many options of action available right now for all stakeholders to become more climate sustainable.

• The academic system is currently not climate sustainable.

• Individual stakeholders are taking first steps towards climate sustainability.

• There are many options of action available right now for all stakeholders to become more climate sustainable.

The academic system in the context of the climate crisis

• Academia is part of the solution through research, education, evidence-based policy advice

 Academia is part of the problem through emissions from own operations

The academic system in the context of the climate crisis

 Academia is part of the solution through research, education, evidence-based policy advice

 Academia is part of the problem through emissions from own operations

 \rightarrow Data and examples

The academic system in the context of the climate crisis

 Academia is part of the solution through research, education, evidence-based policy advice

 Academia is part of the problem through emissions from own operations

 \longrightarrow Data and examples

IPCC (2022):

Stakeholders:

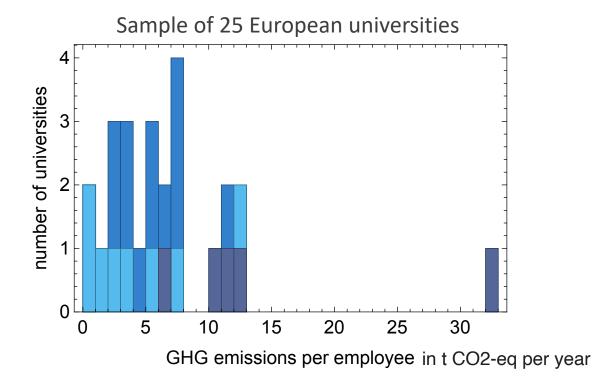
- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

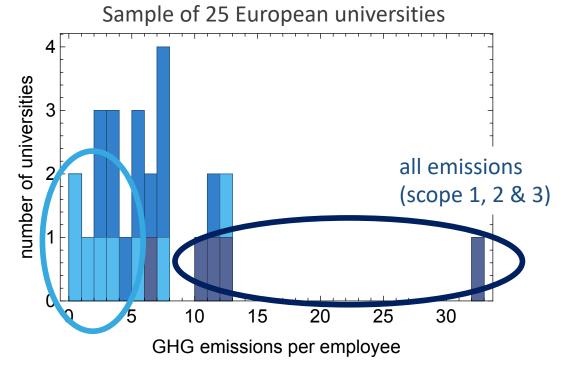
IPCC (2022):



Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):



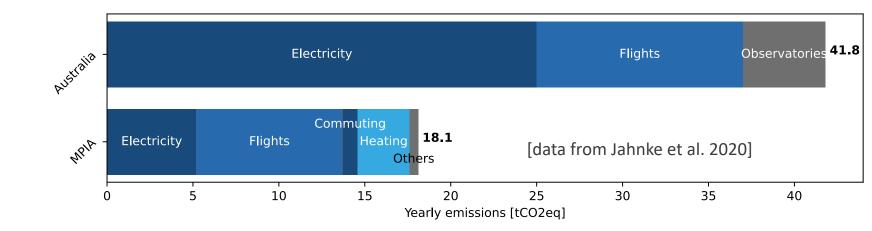
Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

300 Gigatons CO_2 emissions ``remaining" for 83 % chance to limit global warming below 1.5 degrees \rightarrow 1 t per capita per year until 2050

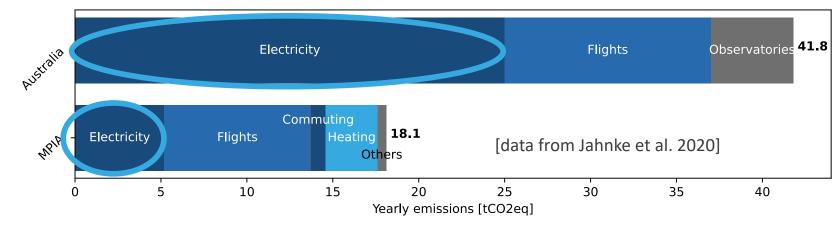
only electricity & heating (scope 1 & 2)



Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):



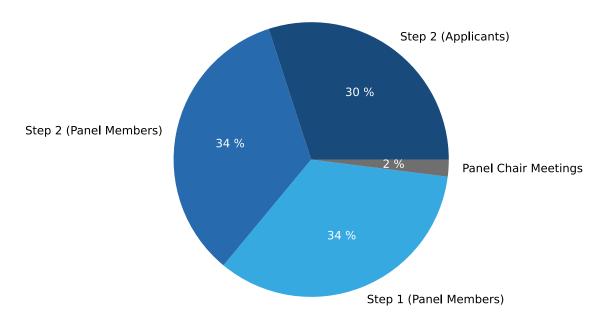
Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

Majority from scientific computing

Stakeholders:


- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

300 Gigatons CO_2 emissions ``remaining" for 83 % chance to limit global warming below 1.5 degrees \rightarrow 1 t per capita per year until 2050

ERC interviews: ~ 1 t per interview

Data gap: no funding organization reports emissions from funded research

Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

300 Gigatons CO_2 emissions ``remaining" for 83 % chance to limit global warming below 1.5 degrees \rightarrow 1 t per capita per year until 2050

On average ~ 1 t per participant per international conference

Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

300 Gigatons CO_2 emissions "remaining" for 83 % chance to limit global warming below 1.5 degrees \rightarrow 1 t per capita per year until 2050

On average ~ 1 t per participant per international conference

Virtual format: estimates of reductions: 94 % to > 99 %

Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

IPCC (2022):

300 Gigatons CO_2 emissions ``remaining" for 83 % chance to limit global warming below 1.5 degrees \rightarrow 1 t per capita per year until 2050

On average ~ 1 t per participant per international conference

Virtual format: estimates of reductions: 94 % to > 99 %

Optimized location for in-person meetings: examples with 20-50 % savings

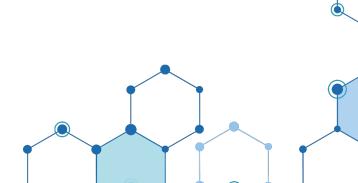
Climate sustainability of the academic system

Stakeholders:

- Universities
- Research institutes
- Students
- Individual academics
- Funding organizations
- Conference organizers
- Academies, learned societies
- Ranking agencies
- Policy makers

Key message 1:

The academic system is currently not climate sustainable.



Cultural change requires change in individual behaviors and changes in framework conditions, norms and incentives

Key message 2:

Individual stakeholders are taking first steps towards climate sustainability.

Cultural change requires change in individual behaviors and changes in framework conditions, norms and incentives

Key message 2:

Individual stakeholders are taking first steps towards climate sustainability.

Examples for current practises

1) Change without change of behavior (top-down strategy successful): Green energy on campus

Cultural change requires change in individual behaviors and changes in framework conditions, norms and incentives

Key message 2:

Individual stakeholders are taking first steps towards climate sustainability.

Examples for current practises

- 1) Change without change of behavior (top-down strategy successful): Green energy on campus
- 2) Change with behavioral change required (top-down strategy may fail): Travel policy

Cultural change requires change in individual behaviors and changes in framework conditions, norms and incentives

Key message 2:

Individual stakeholders are taking first steps towards climate sustainability.

Examples for current practises

- 1) Change without change of behavior (top-down strategy successful): Green energy on campus
- 2) Change with behavioral change required (top-down strategy may fail): Travel policy
- 3) Change based on experience during pandemic: virtual instead of physical mobility

Key message 3:

There are many options of action available right now for all stakeholders to become more climate sustainable.

Recommendations

- Goal: Specific, actionable steps, not just overarching principles and general guidelines
- Many recommendations may be obvious

Key message 3:

There are many options of action available right now for all stakeholders to become more climate sustainable.

Recommendations

- Goal: Specific, actionable steps, not just overarching principles and general guidelines
- Many recommendations may be obvious

For all stakeholders:

Mix & match approach to meetings (in-person, hybrid, online)

Key message 3:

There are many options of action available right now for all stakeholders to become more climate sustainable.

Recommendations

- Goal: Specific, actionable steps, not just overarching principles and general guidelines
- Many recommendations may be obvious

For all stakeholders:

- Mix & match approach to meetings (in-person, hybrid, online)
- Improve virtual communication (technology, skills and formats)

Key message 3:

There are many options of action available right now for all stakeholders to become more climate sustainable.

Recommendations

- Goal: Specific, actionable steps, not just overarching principles and general guidelines
- Many recommendations may be obvious

For all stakeholders:

- Mix & match approach to meetings (in-person, hybrid, online)
- Improve virtual communication (technology, skills and formats)
- Base your actions on a solid evidence base but don't stop at publishing a climate report

Recommendations: selected examples

neconinendations. Selected examples	
Universities:	Students:
	Academies, learned societies:
Research institutes:	
	Ranking agencies:
Funding organizations:	Policy makers:
Conference organizers:	

Recommendations: selected examples

Universities:

- 1) Use green energy on campus
- 2) Incentivize low-carbon forms of travel
- 3) Join sustainability network to exchange best-practise ideas

Research institutes:

- Reduce emissions from computing through efficiency gains & computing center location/cloud use
- 2) Make climate sustainability key part of institutional strategy

Funding organizations:

- 1) Ask that applicants discuss the climate impact in their applications
- 2) Virtualise committee work and interviews
- 3) Fund research on climate sustainability of research

Students:

Hold university management accountable

Academies, learned societies:

Become platforms to exchange knowledge and coordinate climate sustainability efforts across individual institutions and across disciplines

Ranking agencies:

Abandon a competitive ranking model for a collaborative threshold model

Policy makers:

Adapt procurement rules for public universities to enable climate sustainable choices

Conference organizers:

- 1) Lower travel-related emissions by choice of conference location
- 2) Include online-formats (hybrid; in-person only every second year; always online)
- 3) Monitor, report and reduce emissions

Recommendations: selected examples

Universities:

- 1) Use green energy on campus
- 2) Incentivize low-carbon forms of travel
- 3) Join sustainability network to exchange best-practise ideas

Research institutes:

- Reduce emissions from computing through efficiency gains & computing center location/cloud use
- 2) Make climate sustainability ke Individual academics:

Consider all your opportunities for leverage

Funding organizations:

- 1) Ask that applicants discuss the commute impact in their applications
- 2) Virtualise committee work and interviews
- 3) Fund research on climate sustainability of research

Students:

Hold university management accountable

Academies, learned societies:

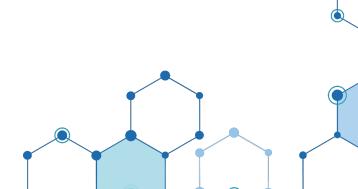
Become platforms to exchange knowledge and coordinate climate sustainability efforts across individual institutions and across disciplines

ing agencies:

don a competitive ranking model for a porative threshold model

r oney makers:

Adapt procurement rules for public universities to enable climate sustainable choices


Conference organizers:

- 1) Lower travel-related emissions by choice of conference location
- 2) Include online-formats (hybrid; in-person only every second year; always online)
- 3) Monitor, report and reduce emissions

allea | All European Academies

Key message 4:

Key message 4:

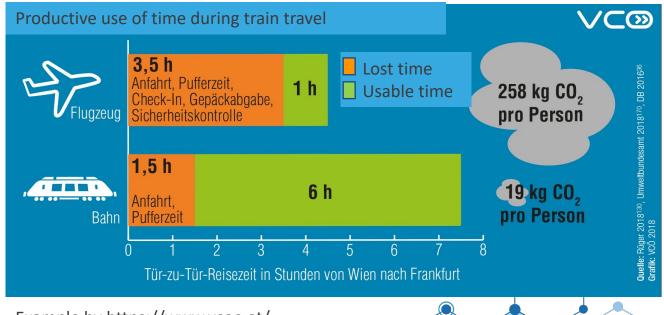
There are positive side-effects and co-benefits in several actions.

• Online-/hybrid-meetings: increased inclusivity (globally, but also researchers with care responsibilities, personal reasons against traveling)

Key message 4:

- Online-/hybrid-meetings: increased inclusivity (globally, but also researchers with care responsibilities, personal reasons against traveling)
- Cutting climate costs can cut economic costs (e.g., reduced scientific computing through efficiency gains; running laboratory freezers at -70 °C instead of -80 °C)

Key message 4:


- Online-/hybrid-meetings: increased inclusivity (globally, but also researchers with care responsibilities, personal reasons against traveling)
- Cutting climate costs can cut economic costs (e.g., reduced scientific computing through efficiency gains; running laboratory freezers at -70 °C instead of -80 °C)
- Substituting physical with virtual mobility can mean time gains (e.g., for research)

Key message 4:

- Online-/hybrid-meetings: increased inclusivity (globally, but also researchers with care responsibilities, personal reasons against traveling)
- Cutting climate costs can cut economic costs (e.g., reduced scientific computing through efficiency gains; running laboratory freezers at -70 °C instead of -80 °C)
- Substituting physical with virtual mobility can mean time gains (e.g., for research)
- Switching mode of transport can mean gain in working time

• The academic system is currently not climate sustainable.

• Individual stakeholders are taking first steps towards climate sustainability.

• There are many options of action available right now for all stakeholders to become more climate sustainable.

ALLEA | All European Academies Jägerstr. 22/23, 10117 Berlin, Germany